1,435 research outputs found

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    Online Continual Learning on Sequences

    Full text link
    Online continual learning (OCL) refers to the ability of a system to learn over time from a continuous stream of data without having to revisit previously encountered training samples. Learning continually in a single data pass is crucial for agents and robots operating in changing environments and required to acquire, fine-tune, and transfer increasingly complex representations from non-i.i.d. input distributions. Machine learning models that address OCL must alleviate \textit{catastrophic forgetting} in which hidden representations are disrupted or completely overwritten when learning from streams of novel input. In this chapter, we summarize and discuss recent deep learning models that address OCL on sequential input through the use (and combination) of synaptic regularization, structural plasticity, and experience replay. Different implementations of replay have been proposed that alleviate catastrophic forgetting in connectionists architectures via the re-occurrence of (latent representations of) input sequences and that functionally resemble mechanisms of hippocampal replay in the mammalian brain. Empirical evidence shows that architectures endowed with experience replay typically outperform architectures without in (online) incremental learning tasks.Comment: L. Oneto et al. (eds.), Recent Trends in Learning From Data, Studies in Computational Intelligence 89

    Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol

    Get PDF
    Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20–24 months) as compared to the young animals (1–3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Increased risk of cancer among relatives of patients with lung cancer in China

    Get PDF
    BACKGROUND: Genetic factors were considered as one of the risk factors for lung cancer or other cancers. The aim of this work was to determine whether a genetic predisposition accounts for such familial aggregation of cancer among relatives of lung cancer probands. METHODS: A case-control study was conducted in 800 case families identified by lung cancer patients (probands), and in 800 control families identified by the probands'spouses. The data were analysed with logistic regression analysis model. RESULTS: The data revealed a significantly greater overall risk of cancer (OR = 1.82, P < 0.01) in the proband group. The relatives of lung cancer probands maintained an increased risk of non-lung cancer (P < 0.05) after adjusting for confounder factors. The crude odds ratio of a proband family having one family member with cancer was 1.67 compared with control families. Proband families were 2.56 times more likely to have two other family members with cancer. For three cancers and four or more cancers, the risk increased to 3.50 and 5.91, respectively. The most striking differences in cancer prevalence between proband and control families were noted for cancer risk among female relatives. The strongest effects were for not only lung cancer in any female relatives (OR 2.17, 95%CI 1.60–3.64) and mothers (OR 2.78, 95%CI 1.23–5.12) and sisters (OR 2.03, 95%CI 1.26–3.97), but also non-lung cancer in females and mothers (OR 2.00, 95%CI 1.26–3.01, and OR 2.34, 95%CI 1.28–4.40, respectively). CONCLUSION: These data support the hypothesis of a genetic susceptibility to cancer in families with lung cancer, and the female genetic susceptibility to cancer might be greater than male

    Benzoate Catabolite Repression of the Phenol Degradation in Acinetobacter calcoaceticus PHEA-2

    Get PDF
    Acinetobacter calcoaceticus PHEA-2 exhibited a delayed utilization of phenol in the presence of benzoate. Benzoate supplementation completely inhibited phenol degradation in a benzoate 1,2-dioxygenase knockout mutant. The mphR encoding the transcriptional activator and mphN encoding the largest subunit of multi-component phenol hydroxylase in the benA mutant were significantly downregulated (about 7- and 70-fold) on the basis of mRNA levels when benzoate was added to the medium. The co-transformant assay of E. coli JM109 with mphK::lacZ fusion and the plasmid pETR carrying mphR gene showed that MphR did not activate the mph promoter in the presence of benzoate. These results suggest that catabolite repression of phenol degradation by benzoate in A. calcoaceticus PHEA-2 is mediated by the inhibition of the activator protein MphR

    S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice

    Get PDF
    Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage

    The five-item Brief-Symptom Rating Scale as a suicide ideation screening instrument for psychiatric inpatients and community residents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An efficient screening instrument which can be used in diverse settings to predict suicide in different populations is vital. The aim of this study was to use the five-item Brief Symptom Rating Scale (BSRS-5) as a screening instrument for the prediction of suicide ideation in psychiatric, community and general medical settings.</p> <p>Methods</p> <p>Five hundred and one psychiatric, 1,040 community and 969 general medical participants were recruited. The community participants completed a structured telephone interview, and the other two groups completed the self-report BSRS-5 questionnaire.</p> <p>Results</p> <p>The logistic regression analysis showed that the predictors of suicide ideation for the psychiatric group were depression, hostility and inferiority (<it>p </it>< 0.001, <it>p </it>= 0.016, <it>p </it>= 0.011), for the community group, inferiority, hostility and insomnia (<it>p </it>< 0.001, <it>p </it>< 0.001, <it>p </it>= 0.003), and for the general medical group, inferiority, hostility, depression and insomnia (<it>p </it>< 0.001, <it>p </it>= 0.001, <it>p </it>= 0.020, <it>p </it>= 0.008). The structural equation model showed the same symptom domains that predicted suicide ideation for all three groups. The receiver operating characteristic curve using the significant symptom domains from logistic regression showed that for the psychiatric group, the optimal cut-off point was 4/5 for the total of the significant dimensions (positive predictive value [PPV] = 78.01%, negative predictive value [NPV] = 79.05%), for the community group, 7/8 (PPV = 68.75%, NPV = 96.09%), and for the general medical group, 12/13 (PPV = 92.86%, NPV = 88.48%).</p> <p>Conclusion</p> <p>The BSRS-5 is an efficient tool for the screening of suicide ideation-prone psychiatric inpatients, general medical patients, and community residents. Understanding the discriminative symptom domains for different groups and the relationship between them can help health care professionals in their preventative programs and clinical treatment.</p

    Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium tuberculosis Infection

    Get PDF
    Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation

    Sensible heat has significantly affected the global hydrological cycle over the historical period

    Get PDF
    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability
    corecore